Home   |   Login    |  Join   

 

 

 

 

 

  ½Å¼ÒÀ翬±¸°³¹ß

  HOME > »ç¾÷¿µ¿ª > ½Å¼ÒÀ翬±¸°³¹ß

 
   [°³¹ß½Ç] ½Å¼ÒÀç.½ÅÁ¦Ç° °³¹ß  

[Thin filament pyrometry]

Main article: Thin filament pyrometry

Image of the test flame and glowing SiC fibers. The flame is about 7 cm tall.

Silicon carbide fibers are used to measure gas temperatures in an optical technique called thin filament pyrometry. It involves the placement of a thin filament in a hot gas stream. Radiative emissions from the filament can be correlated with filament temperature. Filaments are SiC fibers with a diameter of 15 micrometers, that is 5 times thinner than human hair. Because the fibers are so thin, they do little to disturb the flame and their temperature remains close to that of the local gas. Temperatures of about 800 - 2500 K can be measured.

Electronic circuit elements

Silicon carbide is used for ultrafast, high-voltage Schottky diodes, MOSFETs and high temperature thyristors for high-power switching.[23] Currently, problems with the interface of SiC with silicon dioxide has hampered the development of SiC based power MOSFETs and insulated-gate bipolar transistors. Another problem is that SiC itself breaks down at high electric fields due to the formation of extended stacking faults, but this problem may have been resolved relatively recently.[34]

The history of SiC LEDs is quite remarkable: the first LED action was demonstrated in 1907 using SiC and the first commercial LEDs were again based on SiC. Yellow LEDs made from 3C-SiC were manufactured in in the Soviet Union in the 1970s,[35] and blue ones (6H-SiC) worldwide in the 1980s.[36] The production was soon stopped because gallium nitride showed 10-100 times brighter emission. This difference in efficiency is due to the unfavorable indirect bandgap of SiC whereas GaN has a direct bandgap which favors light emission. However, SiC is still one of the important LED components - it is a popular substrate for growing GaN devices, and it also serves as a heat spreader in high-power LEDs.[36]

Astronomy

The low thermal expansion coefficient, high hardness, rigidity and thermal conductivity make silicon carbide a desirable mirror material for astronomical telescopes. The growth technology (chemical vapor deposition) has been scaled up to produce disks of polycrystalline sililcon carbide up to 3.5 m in diameter, and several telescopes are already equipped with SiC optics.

 

Heating elements

References to silicon carbide heating elements exist from the early 20th century when they were produced by Acheson's Carborundum Co. in the U.S. and EKL in Berlin. Silicon carbide offered increased operating temperatures compared with metallic heaters. Silicon carbide elements are used today in the melting of non-ferrous metals and glasses, heat treatment of metals, float glass production, production of ceramics and electronics components, etc.

 

Nuclear fuel elements

Silicon carbide is often used as a layer of the tristructural-isotropic coating for the nuclear fuel elements of high temperature gas cooled reactors or very high temperature reactors such as the Pebble Bed Reactor. Silicon carbide provides the mechanical stability to the fuel and is the main diffusion barrier to the release of fission products.

[¹ÚÆÇ Çʶó¸àÆ® °í¿Â ÃøÁ¤¹ý] 

½ÃÇè ºÒ²É °ú ºû³ª´Â »öÀÇ SiC ¼¶À¯ ÀÇ À̹ÌÁö. ºÒ²É Àº ¾à 7§¯ ³ôÀÌ ÀÌ´Ù .

źȭ±Ô¼Ò ¼¶À¯¸¦ ¹ÚÆÇ Çʶó¸àÆ® °í¿Â°è·Î ºÒ¸®´Â ±¤ÇÐ ±â¼ú·Î °¡½º¿Âµµ¸¦ ÃøÁ¤ÇÏ´Â µ¥ »ç¿ë µÈ´Ù. ±×°ÍÀº °í¿Â °¡½º ½ºÆ®¸²ÀÇ ¾ãÀº Çʶó¸àÆ®ÀÇ ¹èÄ¡¸¦ Æ÷ÇÔÇÑ´Ù. Çʶó¸àÆ® ¿¡¼­ º¹»ç ¹èÃâ·®Àº Çʶó¸àÆ®ÀÇ ¿Âµµ¿Í »ó°ü°ü°è°¡ µÉ ¼ö ÀÖ´Ù. Çʶó¸àÆ®´Â 15¸¶ÀÌÅ©·Î¹ÌÅÍ Á÷°æÀÇ SiC ¼¶À¯ÀÎ, Áï Àΰ£ÀÇ ¸Ó¸®Ä«¶ôº¸´Ù 5¹è ´õ ¾ã´Ù . ±×µéÀº ºÒ²ÉÀ» ¹æÇØÇÏ°í ÀÚ½ÅÀÇ ¿Âµµ´Â ±¸°£°¡½º¿¡ °¡±î°Ô À¯ÁöµÈ´Ù. ±×·¯¹Ç·Î ¾à 800ÀÇ ¿Âµµ - 2500K ÃøÁ¤ ÇÒ ¼ö ÀÖ´Ù.

ÀüÀÚȸ·Î¼ÒÀÚ

źȭ±Ô¼Ò´Â ÃÊ°í¼Ó, °íÀü·Â½ºÀ§Äª °íÀü¾Ð¼îƮŰ ´ÙÀÌ¿Àµå, ¸ð½ºÆÐÆ® ¹× °í¿Â»çÀ̸®½ºÅÍ À§ÇØ »ç¿ëµÈ´Ù. ÀÌ»êÈ­ ½Ç¸®ÄÜÀ¸·Î SiCÀÇ °è¸é¿¡ ´ëÇÑ ¹®Á¦°¡ SiC¸¦ ±â¹ÝÀü·Â ¸ð½ºÆÐÆ®ÀÇ ¹ßÀüÀ» ¹æÇØÇÏ°í Àý¿¬-³»¿ë°ÔÀÌÆ® ¹ÙÀÌÆú¶ó Æ®·£Áö½ºÅÍ. ¶Ç ´Ù¸¥ ¹®Á¦´Â SiC¸¦ ÀÚü È®Àå ÀûÃþ°áÇÔÀÇ Çü¼ºÀ¸·Î ÀÎÇÑ ³ôÀº Àü±âÀå¿¡ Àå¾Ö°¡ ÀÖ´Ù ´Ù¸¸, ÀÌ ¹®Á¦´Â »ó´ëÀûÀ¸·Î ÃÖ±Ù¿¡ ÇØ°á µÇ¾ú´Ù. [ 34 ]

SiC¸¦ LEDÀÇ ¿ª»ç´Â ¸Å¿ì ³î¶ó¿î °ÍÀÔ´Ï´Ù : ù ¹ø° LED µ¿ÀÛÀº SiC¸¦ »ç¿ëÇÏ¿© 1907 ³â¿¡ Áõ¸íÇÏ°í, ÃÖÃÊÀÇ »ó¿ë LED´Â ´Ù½Ã SiC¸¦ ±â¹ÝÀ¸·Î Çß´Ù . ÁúÈ­Ä®·ýÀº 10~100 ½Ã°£À» º¸¿© ÁÖ¾ú±â ¶§¹®¿¡ 3C-SiC¸¦ ¸¸µç ³ë¶õ»ö LED´Â 1980 ³â´ë¿¡ Àü ¼¼°èÀûÀ¸·Î 1970 ³â´ë¿¡ ¼Ò·Ã¿¡¼­ Á¦Á¶ [ 35 ]µÈ °Í°ú Ǫ¸¥°Í (6H- SiC¸¦) µÇ¾ú´Ù. [ 36] »ý»êÀº °ð ÁߴܵǾú´Ù ¹àÀº ºûÀ» ¹æÃâÇÏ´Â . ÁúÈ­°¥·ý (GaN) ¹ß±¤È£ÀÇ Á÷Á¢ ¹êµå °¸À» °¡Áö°í ÀÖ´Â ¹Ý¸é, È¿À² ÀÇ Â÷ÀÌ´Â SiC·Î ºÒ¸®ÇÑ °£Á¢ ¹êµå °¸¿¡ ÀÇÇÑ °ÍÀÔ´Ï´Ù. ±×·¯³ª, SiC¸¦ ¿©ÀüÈ÷ Áß¿äÇÑ LED ±¸¼º ¿ä¼Ò ÁßÀÇ Çϳª´Â ÁúÈ­°¥·ý (GaN)À» ºÐÇØÇϱâÀ§ÇÑ À§ÇÑ´ëÁßÀûÀÎ ¼ºÀå ±âÆÇÀÌ°í, ¶ÇÇÑ ÇÏÀÌÆÄ¿ö LEDÀÇ ¿­ È®»ê±â·Î¼­ ±â´É[ 36]°ú õ¹®ÇÐÀûÀÎ ³·Àº ¿­ÆØâ °è¼ö , ³ôÀº °æµµ, °­¼º, ¿­ÀüµµÀ²Àº źȭ±Ô¼Ò õü ¸Á¿ø°æ À§Çѹٶ÷Á÷ÇÑ °Å¿ï ¼ÒÀç·Î ÀÌ¿ëµÇ¾ú´Ù. ¼ºÀå±â¼ú( È­ÇÐ ±â»óÁõÂø)Àº ÃÖ´ë 3.5 m Á÷°æ¿¡´Ù °áÁ¤sililcon Ä«¹ÙÀ̵åÀÇ µð½ºÅ©¸¦ »ý»êÇÏ´Â ÃÖ´ë Å©±â¸¦ Á¶Á¤ÇÏ°í ÀÖÀ¸¸ç, ¿©·¯ ¸Á¿ø°æÀº ÀÌ¹Ì SiC¸¦ »ç¿ëÇÑ ±¤ÇÐÀ» °®Ãß°í ÀÖ½À´Ï´Ù.

źȭ±Ô¼Ò¹ß¿­Ã¼

¹ß¿­Ã¼´Â º£¸¦¸°¿¡¼­ ¹Ì±¹°ú EKL¿¡¼­ ¾ÖÄ¡½¼ÀÇ Ä«º¸·±´ý (ÁÖ)¿¡ ÀÇÇؼ­ ¹ß°ßµÇ¾úÀ¸¸ç ½Ç¸®ÄÜ Ä«¹ÙÀ̵å´Â ±Ý¼ÓÈ÷ÅÍ¿¡ ºñÇØ °í¿ÂÀÇ ¹ß¿­¿Âµµ¸¦ Á¦°øÇß´Ù. źȭ±Ô¼Ò¹ß¿­Ã¼´Â ºñö±Ý¼Ó ¹× À¯¸®ÀÇ ¿ëÇØ, ±Ý¼ÓÀÇ ¿­Ã³¸®, Ç÷ÎÆ® À¯¸®»ý»ê, µµÀÚ±â ¹× ÀüÀÚºÎÇ°ÀÇ »ý»ê, ¿À´Ã³¯ »ç¿ëµÇ´Â ÇÙ¿¬·áÀÇ ¿ä¼Ò¿Í °¡½º¿øÀڷθ¦ ³Ã°¢ ¶Ç´Â Æäºíº£µå ¿øÀÚ·Î µî ¸Å¿ì³ôÀº ¿ÂµµÀÇ ¿øÀÚ·Î °í¿ÂÀÇ ÇÙ¿¬·á ¿ä¼ÒÀÇ tristructural µî ¹æ¼ºÄÚÆà ÃþÀ¸·Î »ç¿ëµÈ´Ù. źȭ±Ô¼Ò´Â ¿¬·á¿¡ ±â°èÀû ¾ÈÁ¤¼ºÀ» Á¦°øÇϸç, Çٺп­ »ý¼º¹°ÀÇ ¹æÃâ¿¡ ¸ÞÀÎÈ®»ê ¹è¸®¾î ÀÌ´Ù.


 

¿¬±¸½Ç ½ÃÇè½Ç °³¹ß½Ç ¾ÖÇÁÅÍ°ü¸®½Ç

 

[¿¬±¸½Ç] ¼ÒÀç¹× Àç·áº¹ÇÕ½ÇÇè
A replication of H.J. Rounds LED experimentsEarly, non-systematic and often non-recognized syntheses of silicon carbide had been reported by Despretz (1849), Marsden (1880) and Colson (1882).[3] Wide-scale production is credited to Edward Goodrich Acheson around 1893. He patented the method for making silicon carbide powder on February 28, 1893.[4] Acheson also developed the electric batch furnace by which SiC is still made today and formed The Carborundum Company to manufacture bulk SiC, initially for use as an abrasive.[5] In 1900 the company settled with the Electric Smelting and ¡¦
[°³¹ß½Ç] ½Å¼ÒÀç.½ÅÁ¦Ç° °³¹ß
[Thin filament pyrometry]Main article: Thin filament pyrometryImage of the test flame and glowing SiC fibers. The flame is about 7 cm tall.Silicon carbide fibers are used to measure gas temperatures in an optical technique called thin filament pyrometry. It involves the placement of a thin filament in a hot gas stream. Radiative emissions from the filament can be correlated with filament temperature. Filaments are SiC fibers with a diameter of 15 micrometers, that is 5 times thinner than human hair. Because the fibers are so thin, they do little to disturb the flame and their tempera¡¦
[½ÃÇè½Ç] Àç·á-Á¦Ç°-¼º´É½ÃÇè
ÀúÇ×°ú ¿Âµµ¿ÍÀÇ °ü°è±×¸²1) ÀϹÝÀûÀÎ ÀúÇ× ¿Âµµ Ư¼º µµ 1¿¡ µµ½Ã µÈ ¹Ù¿Í °°ÀÌ (¿Âµµ´Â ÀúÇ× °ªÀÌ ³»·Á°¡¸é.) "SiC Heater"ÀúÇ× ¿Âµµ Ư¼ºÀÇ ¿Âµµ °è¼ö°¡650-700µµ±îÁö ºÎÁ¤ÀûÀ̳ª, ´Ù½Ã ¿Âµµ°¡ »ó½ÂÇϸé(±àÁ¤ÀûÀ¸·Î ¹Ù²î¸é ¿Âµµ ¿Ã¶ó°£´Ù) ÀúÇ× °ªÀÌ ¿Ã¶ó °£´Ù.Âü°í : SiC ÀúÇ×Àº ÀϹÝÀûÀ¸·Î ³ëÃâµÈ ¾ß¿Ü ´ë±â¿Âµµ 1000µµ ¿¡¼­ ÃøÁ¤µË´Ï´Ù. ¸í½ÃµÈ °øĪ ÀúÇ×Àº½Ç¿Â¿¡¼­ ÃøÁ¤ÇÑ °Í°ú °ü°è°¡ ¾ø½À´Ï´Ù. (ÂüÁ¶ ±×¸² 1)1000¡ÆCÀÇ Ç¥ÁØ ±³Á¤¿¡ SiC ¹ß¿­Ã¼ÀÇ Á¤°Ý °ªÀº Æò±ÕÀúÇ×À¸·Î ¼³°è½Ã ±âÁØÀº 1000µµÀÔ´Ï´Ù.È­ÇÐÀûƯ¼ºSiC ¹ß¿­Ã¼´Â È­ÇÐÀûÀ¸·Î ¾ÈÁ¤µÈ, Àç°áÁ¤ ½Ç¸®ÄÜ Ä«¹ÙÀ̵å·Î ÀÌ·ç¾îÁö°í, °í¿Â ¾È¡¦
[¾ÖÇÁÅÍ°ü¸®½Ç] ¼ÒºñÀÚÀÇ°ßÁß½Ã
¡á ºÐÀ§±âÀÇ SiCÈ÷ÅÍ¿¡ ´ëÇÑ ¿µÇâ    ·Î(ÒÄ) ³»ºÎÀÇ ºÐÀ§±â´Â SiC È÷ÅÍÀÇ ¼ö¸í¿¡ Å« ¿µÇâÀ» ¹ÌÄ£´Ù. °¡µ¿ Áß¿¡ SiC È÷ÅÍ´Â Á¡Â÷ »êÈ­µÇ¾î SiO©ü·Î º¯È­µÈ´Ù. SiO©ü´Â SiC ¼öÁ¤ ¼ººÐÀ» ºÐ¸®½ÃÅ°°í, ÀÌ¿¡ µû¶ó ÀúÇ×ÀÌ Áõ°¡ÇÏ´Â ºÎÀ§°¡ »ý°Ü ºÎÇÇ°¡ È®´ëµÇ°í, SiC È÷ÅÍ°¡ ÆļյȴÙ. °ÇÁ¶ÇÏ°í ¼ø¼öÇÑ °ø±â Áß¿¡¼­ SiC È÷ÅÍ´Â 2000½Ã°£À» °è¼Ó »ç¿ëÇÒ ¼ö ÀÖ´Ù.¡á ºÐÀ§±â¿¡µû¸¥ ÃÖ°í »ç¿ë ¿Âµµ(¡É)     ¢º SiC (źȭ±Ô¼Ò)°è¿­             Air(°ø±â) 1500¡É        Vacuum(Áø°ø) 1000-1200¡É¡¦